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1. Show that for every 0 < θ ≤ π, one has∫ θ

0

√
1 + cos2(t)dt >

√
θ2 + sin2(θ).

Solution: The problem is very easy, if one realizes that the left hand side is the
arc length of the curve y = sin(x) from (0, 0) to (θ, sin(θ)), while the right hand
side is the Euclidian distance between the same points.
Analytical Solution Define the function

F (θ) =

∫ θ

0

√
1 + cos2(t)dt−

√
θ2 + sin2(θ).

Since F (0) = 0, it will suffice to show that F ′(θ) > 0. We have (by the funda-
mental theorem of calculus)

F ′(θ) =
√

1 + cos2(θ)− θ + sin θ cos θ√
θ2 + sin2(θ)

.

Thus, matters amount to showing

(1 + cos2(θ))(θ2 + sin2(θ)) > (θ + sin θ cos θ)2.

The last one is equivalent (after squaring) to

θ2 cos2(θ) + sin2(θ) > 2θ sin θ cos θ,

which is equivalent to (θ cos(θ)− sin θ)2 > 0, which is satisfied for all θ ∈ (0, π].

1



2. How many ordered triples of integers (x, y, z) satisfy the equation |x|+ |y|+ |z| =
2010?

Solution #1:

First of all, the number of integer solutions of |x|+ |y| ≤ n is

f(n) = 1 + 3 + 5 + · · ·+ (2n− 1) + (2n+ 1) + (2n− 1) + · · ·+ 3 + 1

(by counting the number of solutions with x = −n, x = −n+ 1, . . . , x = 0, . . . ,
x = n). Note that

f(n) = (1 + 3 + 5 + · · ·+ (2n− 1) + (2n+ 1)) + (1 + 3 + 5 + · · ·+ (2n− 1))

= (n+ 1)2 + n2 = 2n2 + 2n+ 1.

Now let g(n) be the number of integer solutions of |x| + |y| + |z| ≤ n. Then
counting the number of solutions with x = −n, x = −n + 1, . . . , x = 0, . . . ,
x = n gives

g(0) = 1,

g(1) = 1 + (1 + 3 + 1) + 1,

g(2) = 1 + (1 + 3 + 1) + (1 + 3 + 5 + 3 + 1) + (1 + 3 + 1) + 1,

· · · g(n) = f(0) + f(1) + · · ·+ f(n− 1) + f(n) + f(n− 1) + · · ·+ f(1) + f(0).

In particular,

g(n)−g(n−1) = f(n)+f(n−1) = 2n2+2n+1+2(n−1)2+2(n−1)+1 = 4n2+2

and the number we’re looking for is

g(2010)− g(2009) = 4(20102) + 2 = 4(4040100) + 2 = 16160402.

Solution #2: Let h(n, d) be the number of positive integer solutions of x1 +
· · · + xd = n. This is the same as the number of non-negative integer solutions
of x1 + · · · + xd = n − d. This is the number of ways of arranging n − d stars
and d − 1 bars and taking xi to be the number of stars in the ith block: e.g.,
∗ ∗ || ∗ ∗ ∗ ∗| ∗ | corresponds to 2+0+4+1+0=7. Therefore

h(n, d) =

(
n− 1

d− 1

)
.
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If we count the solutions to |x|+ |y| = |z| = n by the number of 0s they contain,
we get

6h(n, 1) + 12h(n, 2) + 8h(n, 3) = 6

(
n

0

)
+ 12

(
n− 1

1

)
+ 8

(
n− 1

2

)
= 6 + 12(n− 1) + 8(n− 1)(n− 2)/2

and cleaning up this expression gives 4n2 + 2 as in Solution #1.

3. Let fn denote the nth Fibonacci number: f0 = 0, f1 = 1, and fn = fn−1 + fn−2

for n ≥ 2. Evaluate
∞∑
n=1

fn
cn
.

Solution: Call this number A. Set f0 = 0 for convenience (so in fact f2 = f1+f0).
Then:

A =
∞∑
n=1

fn
cn

=
1

c
+
∞∑
n=2

fn−1 + fn−2

cn

=
1

c
+
∞∑
n=2

fn−1

cn
+
∞∑
n=2

fn−2

cn

=
1

c
+

1

c

∞∑
n=2

fn−1

cn−1
+

1

c2

∞∑
n=2

fn−2

cn−2

=
1

c
+

1

c

∞∑
n=1

fn
cn

+
1

c2

∞∑
n=1

fn
cn

=
1

c
+
A

c
+
A

c2

and solving A = 1/c+ A/c+ A/c2 yields

A =
c

c2 − c− 1
.

4. Find the area of the set of all points in the unit square, which are closer to the
center of the square than to its sides.
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Solution:
Let us center the coordinate system at the center of the square, with axes parallel
to the sides. The set obviously has a lot of symmetries. Consider the portion in
the set y ≥ |x|, which is obviously a quarter of the whole set. The set may be
described analytically by the equations√

x2 + y2 ≤ 1

2
− y and y ≥ |x|

which leads us to

|x| ≤ y ≤ 1

4
− x2.

Thus,

S = 4

∫ √
2−1
2

−
√

2−1
2

(
1

4
− x2 − |x|)dx = 8

∫ √
2−1
2

0

(
1

4
− x2 − x)dx =

4
√

2− 5

3
.

5. Let s = (s1, . . . , sn) be a permutation of the numbers {1, 2, . . . , n}. A number
x is called a local minimum of s if x is smaller than both of the numbers on
either side of it (or the only number next to it, if x happens to be a1 or sn). For
example, if s = (8, 4, 1, 2, 9, 5, 7, 6, 3), then the local minima are 1, 5, and 3.

(1) In terms of n, how many permutations (s1, . . . , sn) are “V-shaped”, i.e., have
the number 1 as the only local minimum?

(2) In terms of n, how many permutations (s1, . . . , sn) are “W-shaped”, i.e., have
1 and 2 as their local minima, but no others?

Solution: (1) A V-shaped permutation is specified by which numbers come
before 1 and which numbers come after 1 — having made that choice, the earlier
numbers must appear in decreasing order and the later ones in increasing order.

So the answer is 2n−1.

(2) Let s be a W-shaped permutation. Then s has one of the two forms

x1, . . . , xp, 1, y1, . . . , yq, 2, z1, . . . , zr
x1, . . . , xp, 2, y1, . . . , yq, 1, z1, . . . , zr

where

• X∪Y ∪Z = B as a disjoint union, whereX = {x1, . . . , xp}, Y = {y1, . . . , yq},
Z = {z1, . . . , zr}, and B = {3, 4, . . . , n};
• q > 0 (otherwise 2 isn’t a local minimum), though p and r can be zero;
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• x1, . . . , xp are in decreasing order (so that no xi is a local min);

• y1, . . . , yq is “∧-shaped”, i.e., has a unique local maximum;

• z1, . . . , zr are in increasing order.

By part (a), once we choose which of 1, 2 comes first and choose the sets X, Y, Z,
there are 2|Y |−1 possibilities for s. For any choice of a nonempty subset Y , there
are 2n−2−|Y | ways to choose X (and then Z is uniquely determined), so the total
number of possibilities for s is

2
∑

X∪Y ∪Z=B}
Y 6=∅

2|Y |−1 = 2
∑
∅6=Y⊆B

2|Y |−12n−2−|Y |

= 2
∑
∅6=Y⊆B

2n−3

= 2n−2
∑
∅6=Y⊆B

1

= 2n−2(2n−2 − 1).

5


