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1. Find the real number a ∈ (0, 1) that minimizes the integral

I(a) =

∫ 1

0

|xn − an| dx

where n ≥ 1 is an integer.
Solution: Since f(x) = xn is an increasing function on [0, 1] we have

I(a) =

∫ 1

0

|xn − an| dx =

∫ a

0

(an − xn) dx+

∫ 1

a

(xn − an) dx,

and by direct calculations we get

I(a) =

(
anx− xn+1

n+ 1

)∣∣∣∣a
0

+

(
xn+1

n+ 1
− anx

)∣∣∣∣1
a

=
2n

n+ 1
an+1 − an + 1.

To determine the minimum value of I(a) when a ∈ (0, 1) we observe that

dI(a)

da
= n(2a− 1)an−1,

so the only critical point of I(a) in (0, 1) is a =
1

2
. Since the derivative of I(a) is

negative on
(

0,
1

2

)
and positive on

(
1

2
, 1

)
we conclude that the value at a =

1

2
is a

minimum.

2. Let x1, . . . , xk are disctinct reals. Define polynomials

pk(x) =
∏
j 6=k

x− xj

xk − xj

Show that
n∑

k=1

pk(x) = 1,

for all x.
Solution: Observe first that pk(xk) = 1, pk(xm) = 0, for all k,m 6= k. Thus, for the
polynomial

P (x) =
n∑

k=1

pk(x)− 1,

we have P (xj) = 0, j = 1, . . . , n. Now, deg(P ) = n − 1 and therefore we have
constructed a polynomial of degree n − 1 with n distinct roots. This is possible only
if P (x) ≡ 0.
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3. Let A be n × n matrix, such that An = αA, where α is a real number, different from
+1,−1. Show that A± In are invertible.
Solution: Let B = A− In (A+ In is treated similarly). We have A = B+ In and thus

(B + In)n = An = αAn = α(B + In)

But1

(B + In)n = In +
n∑

k=1

(
n
k

)
Bk

It follows that
n∑

k=1

(
n
k

)
Bk − αB = B(

n∑
k=1

(
n
k

)
Bk−1 − αIn) = (α− 1)In

Thus

B−1 =
n∑

k=1

(
n
k

)
Bk−1 − αIn.

4. Let n ≥ 1 be an integer and denote by An the set of all distinct values of

En = x1 + 2x2 + 3x3 + · · ·+ (n− 1)xn−1 + nxn,

where each xi equals either −1 or +1 for any 1 ≤ i ≤ n.

(i) Determine the sets A1, A2, A3, A4.

(ii) Find the total number Nn of elements of An for each n ≥ 1.

Answers: (i) :A1 = {−1, 1}, A2 = {−3,−1, 1, 3}, A3 = {−6,−4,−2, 0, 2, 4, 6},

A4 = {−10,−8,−6,−4,−2, 0, 2, 4, 6, 8, 10}.

(ii) : Nn = 1 +
n(n+ 1)

2
.

Solutions: Since En+1 = En + (n+ 1)xn+1 and xn+1 equals −1 or +1 we get that for
any n ≥ 1 the set An+1 is the union of two shifts of An,

(∗) An+1 = {a− (n+ 1) | a ∈ An} ∪ {a+ (n+ 1) | a ∈ An}, n ≥ 1.

(i) Equation (∗) can now be used to first determine A2 from A1 = {−1, 1} by adding
−2 or 2 to the elements of A1, then to determine A3 from A2 by adding −3 or 3 to the
elements of A2, and finally to get A4 from A3 by adding−4 or 4 to the elements of A3.

1here we do not need to know the precise coefficients of the polynomials
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(ii) Suppose next that the elements of An are listed in ascending order,

(∗∗) a1 < a2 < · · · < aN−1 < aN , N = Nn.

Obviously,

a1 = −(1 + 2 + 3 + · · ·+n) = −n(n+ 1)

2
, aN = 1 + 2 + 3 + · · ·+n =

n(n+ 1)

2
.

The sets An are completely described by the following

Lemma. Sequence (∗∗) is an arithmetic progression with common difference d = 2.

We can prove this result by induction on n, using equation (∗) and based on two
observations:

• any shift of an arithmetic progression is an arithmetic progression;

and

• the union of two arithmetic progressions with the same common difference and at
least one common term is an arithmetic progression.

Here is a different proof that does not use induction! We claim that

(a) For any a, b ∈ An, the difference b− a is an even number; and

(b) If a ∈ An and a < aN , then a+ 2 ∈ An,

two properties which show that (∗∗) is an arithmetic progression with d = 2.

To prove (a), suppose a = x1 +2x2 + . . . nxn and b = y1 +2y2 + . . . nyn. Since yi−xi

equals −2, 0, or 2, for each 1 ≤ i ≤ n, the difference b− a must be even.

To prove (b), suppose a = x1 + 2x2 + . . . nxn with a < aN and analyze the following
two situations, x1 = −1 or x1 = 1.

If x1 = −1, define b ∈ An as b = y1 + 2y2 + . . . nyn, where y1 = 1 and yi = xi for
i ≥ 2. Obviously, b− a = 2, so a+ 2 = b ∈ An.

If x1 = 1, there exists k ≥ 2 such that xk−1 = 1 and xk = −1. Define b ∈ An as
b = y1 + 2y2 + . . . nyn with yk−1 = −1, yk = 1, and yi = xi for all the other values of
i. Once more we get b− a = 2, so a+ 2 = b ∈ An. The proof is complete.

It remains to find N = Nn, the total number of elements of An. From our Lemma we
know that aN = a1 + (N − 1)d, that is,

n(n+ 1)

2
= −n(n+ 1)

2
+ 2(N − 1),

whence N = 1 +
n(n+ 1)

2
for each n ≥ 1.
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5. Take an 8×8 chessboard and delete one white square and one black square at random,
leaving a shape with 62 squares. Is it always possible to cover the remaining 62 squares
with 31 dominoes, with each domino covering two adjacent squares, no matter which
two squares were initially deleted?
Answer: Yes.
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