2015 Kansas MAA Undergraduate Mathematics Competition: Solutions!

1. Show that the equation 2? + 2015z 4+ 2016y®> = 3 has no integer solutions

x,y € Z.

Solution: Given any integers z,y € Z, it is clear that 2016y* will be an even
integer. Further, if = is even then z? 4+ 2015z is the sum of two even integers,
and hence even, while if z is odd then z? + 2015z is the sum of two odd
numbers, and hence also even. In any case, the sum 22 + 20152 + 20163* will
be even for any z,y € Z, and hence the given equation can have no integer

solutions.
2. Find the first digit (the ones digit) in the sum

420+ 3!+ - 4 2015!

Solution: Notice that the ones digit in the above sum is given by the sum

mod 10. Since n! =0 mod 10 for all n > 5, it follows that
n+204+3M+---4+2015! mod 10 =1!'+2!+3!'+4! mod 10 = 3.

Thus, the ones digit of the above sum is 3.

3. Determine whether there exists an infinite sequence (a,) of positive real

numbers such that the series

ia1+a2+...+an
n

n=1

converges.

Solution: Since all of the a,, are positive, it follows that, for each n € N,

a1+a2+...—|—an>a1
n - n

and hence the series diverges by the comparison test.

4. Let f(x) be a strictly positive continuous function. Evaluate the integral

)
A(ﬂm+fm—x>““

Solution: Letting / denote the value of the above integral, we have
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Making the substitution y = 4 — =z we find
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so that, combining with the previous identity, we find

I=4-1=1=2

5. Suppose that f,g : N - N, f is onto, g is one-to-one, and f(n) > g(n) for all
n € N. Prove that f(n) = g(n) for all n € N.

Solution 1: Since f is onto, there exists a n; € N such that f(n,) = 1. Since
g(n1) < f(n1) and g(n;) € N, it follows that g(n;) = 1 = f(ny) Furthermore,
since ¢ is one-to-one, it follows that n; is the unique natural number with
this property. Similarly, since f is onto there exists an n, € N such that
f(ng) = 2. Since g(ns2) < f(no) it follows that g(ns) € {1,2}. Using that g is one-
to-one, it follows that g(ns) # 1 (since n; # ny) and hence that g(n,) = 2. Thus,
g(ny) = f(n2) = 2 and, again by the fact that g is one-to-one, n, is the unique
natural number with this property. Continuing by induction, it follows that,
for each k € N there exists a unique n; € N such that f(ny) = g(n) = k.

It now remains to show that {n;};2, = N, but this is clear since if m ¢
N\ {n}32, then g(m) € N and hence, by above, there exists a unique k£ € N
such that g(nx) = f(nx) = g(m). Since g is one-to-one, it follows that m = n
and hence that {n;}32, = N, as claimed. Together then, it follows that
f(n) = g(n) for every n € N.

Solution 2: By contradiction. Assume there exists my; € N with g(mg) <
f(mp). Since f is onto, there exists m; € N with f(m;) = g(mo). Since g is
one-to-one, and g(mo) = f(m1), g(m1) < f(m1) = g(mo).

Now assume that there exists positive integers my, my, ...m; with g(my) <
g(mg_q1) < --- < g(mg). Since f is onto, there exists my,; € N with f(my1) =
g(my). Since g is one-to-one, g(myi1) < f(mg1) = g(mg).

By induction, we obtain a sequence of positive integers {m,} with the prop-
erty that {g(my)} is a strictly decreasing sequence. Since {g(m;)} C N, this
is a contradiction.

6. For each n € N, show that



Solution: First, rewrite the sum as
n n n—=k n /{

k - i

(k) (m)r

By the binomial theorem, we know

n—=k iy
Z(”Z )3i=(1+3)"—’“:4"—k

i=0
and hence, using the binomial theorem again, the given sum is equal to

n

O

k=0
as claimed.

. Let f : [0,1] — R be an integrable function (not necessarily continuous).
Prove that if f(t) < 2 for all ¢ € [0,1] then there exists a unique solution
x € [0,1] of the equation

S —1— /xf(t)dt.
0

Solution: Define the function ¢ : [0,1] — R by g(z) = 3z — 1 — [ f(t)dt. Since
f is integrable, it follows by the fundamental theorem of calculus that g is
continuous on [0, 1]. Now, notice that g(0) = —1 and that

g(l):2—/01f(t)dt22—/012dt20.

If (1) = 0, then = = 1 is a solution to the equation. If g(1) > 0, by the
intermediate value theorem, we have that there exists some ¢ € (0,1) such
that g(c) = 0. To see that the solution is unique, we claim that g is a strictly
increasing function on [0, 1]. Indeed, given any «,b € [0, 1] with a < b we have

g(b)—g(a):3(b—a)—/bf(t)dt23(b—a)—/b2 dt =b—a>0.

Thus, g is strictly increasing on [0, 1] and hence ¢ is unique, as claimed.

. Suppose f : [0,00) — R is a continuous, non-negative function. Suppose

1
that f(x + 1) = (1/2)f(z) for all z > 0, and / f(z)dz = 100. Show that the
0

integral / f(z) dz exists and find its value.
0



Solution: First, we claim that the given improper integral converges. In-
deed, note that since f is non-negative it follows that the function ¢ : R —
[0,00) given by

o) = [ s

is a non-decreasing function and, furthermore, given any ¢ > 1 we have
implies
t] LIRS
o)< [ f@t=Y [ fla+nds
n=0 0

[t] 1 o0
_ 2(1/2)"/ F()dz <1003 (1/2)" = 200.

Thus, ¢ is a monotone non-decreasing function that is bounded above. It
follows that lim, ., g(t) exists, which proves the given improper integral con-
verges, as claimed.

Now, to evaluate the integral, it sufficies to calculate the limit lim; ., g(t).
Since we know the limit exist, we can take the limit along the natural num-
bers. To this end, for each n € N notice that

g(n) = Z/O fz+k)de = Z(1/2)k/0 flz)dz =100 "(1/2)*

and hence that

n—o0

lim g(n) = 100 i(l/Q}k = 200.

It follows that -
/ f(z)dz = 200.
0

. Determine, with proof, all polynomials satisfying satisfying P(0) = 0 and
P(z?+1) = (P(z))* + 1 for all z.

Solution: We claim the only polynomial satisfying the given properties is

P(z) = z. To see this, first notice that the condition P(0) = 0 implies
P(0*+1)=P0)*+1=1.

so that P(1) = 1. Similarly, we find

PI*+1)=P1)?*+1=1*+1
P(P+1P2+1)=P1*+1)*+1=(1"+1)*+1.



10.

By induction, it follows that if we define the recursive sequence
ay =1, apy1 =a>+1 forall neN

then P(a,) = a, for all n € N. Furthermore, the sequence {a,}:°, is strictly
increasing since for all n € N we have

Upy1 — Qp = a2 +1—a, = (a, —1/2)> +3/4 > 0.

It follows that the function G(z) = P(z) — z is a polynomial with infinitely
many distinct real roots. Since a non-trivial polynomial of degree m can
have at most m real roots by the fundamental theorem of algebra, it follows
that G(z) =0 for all x € R, i.e. P(z) =« for all z € R, as claimed.

Suppose that you have a 2" x 2" grid with a single 1 x 1 square removed.
Prove that the remaining squares can be tiled with L-shaped tiles consist-
ing of three 1 x 1 tiles - that is, a 2 x 2 tile with a single 1 x 1 square removed.

Solution: We prove this by induction on n. Clearly, this is possible if n =1,
since a 2 x 2 grid with exactly one square removed is precisely the shape
of a given L-shaped tile. Now, suppose that, for some given n € N it is
known that that this is possible for any given 2" x 2" grid with exactly one
square removed can be covered by such L-shaped tiles. Consider then a
27+ % 27+l grid and notice this can be decomposed into a 4 2" x 2" sub-grids
in a unique way. Furthermore, we can consider the middle 2 x 2 sub-grid
of the 2"*! x 2"*1 grid made up of exactly one square from each of the four
2" x 2" sub-grids. Since there is exactly one square missing from the given
2mtl % ontl orid, it follows that exactly one of these 2" x 2" sub-grids has
exactly one square missing (by hypothesis) and hence can be tiled by such
L-shaped tiles by the induction hypothesis. After covering this 2" x 2" sub-
grid, it follows that the center 2 x 2 grid has exactly one square missing, and
hence can be tiled with exactly one L-shaped tile. The remaining 3 2" x 2"
sub-grids now each have exactly one square covered, and hence can each
be tiled by the given L-shaped tiles by the induction hypothesis. Thus, the
given 2”1 x 2"*! grid can be tiled by such L-shaped tiles. The proof is thus
complete by mathematical induction.



