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1. Let A= { 1 1 ] Compute det (Z(—l)’“ (Z) AQ’“).
k=0
Solution: Simply observe that
a n
Z(_l)k (k) A%k — (I _ AQ)n
k=0

so that

det (i(—l)k(Z)A%) = ndet (I — A*) = ndet ( é f ) = —3".

k=0

2. Two points P and @) are randomly selected in the interval [0,2]. What is the
probability that P and () are within a distance of 1/3 from each other, i.e.
determine

Prob (dist(P,Q) < %) :

Solution: In the square [0,2]?, the area between the curves P = Q + 1/3 and
P=Q—-1/3is 4—(5/3)> = 11/9. Dividing by 4 gives the probability being
11/36.

3. Evaluate the integral
4
/ (372 —4x + 7) sin (:1:3 — 62% + 127 — 8) dz.
0

Solution: By either recognizing that 2> — 622 + 12z — 8 = (z — 2)? directly, or
coming to this conclusion by noting that x = 2 is the unique critical point
(and root), this motivates the change of variables y = x—2, which transforms
the integral into
2
/ (y2 + 3) sin(y®)dy.

-2

The above integrand is odd and hence integrates to zero.

4. Suppose that f : R — R is a function such that f(f(z)) = = has exactly
2016 solutions. Show that f must have an even number of fixed points, i.e.
solutions of f(z) = z.

Solution: Note that if f(f(z)) = =z, then setting y = f(z) we see that f(f(y)) =
y as well. Thus, there must be an even number of solutions of f(f(z)) = =
that are not themselves fixed points of z. Since 2016 is even, it follows that
f must have an even number of fixed points as well.



5. Suppose that f: R — R is an increasing function that is additive, i.e. f(x +
y) = f(z) + f(y) for all z,y € R, and satisfies lim, ,,, f(z) = co. Prove that the

limit
)
z—oo f([2])

exists, and determine its value. Here, [y] denotes the integer part of a given
y € R. That is, [y] is the largest integer less than or equal to y.

Solution: By definition of || and the monotonicity of f, we have f(z) — 1 <
[f(2)] < f(x) and f(z) - (1) < f([z]) < f(z) so that
fo) =1 _ @) @)
fl@) = f=) = flz) = F(1)
for all z € R. By the squeeze theorem, it follows that the given limit exists
and equals 1.

6. A bicyclist completes a 12 mile ride in 60 minutes. Prove that there exists
a continuous 3-mile segment within this 12 miles that the rider completed
in exactly 15 minutes.

Solution: For each 0 < z <9, let T'(x) denote the amount of time it took the
rider to ride between = and x + 3 miles. Clearly 7'(z) is continuous along the
course and

T0)+T(3)+T(6)+T(9) =60,

which clearly implies that not all of 7'(0), 7'(3), T'(6), and 7'(9) can be less
than 15, and not all can be greater than 15. Thus, there exists integers m,n
with 0 < m,n <9 such that

T(m) <15 <T(n).
By the intermediate value theorem, it follows that there exists some time

t* € [min(m,n), max(m,n)] such that 7'(t*) = 15, as claimed.

7. Given some positive integer p > 1, let 2 — 1 be a prime number and set
n = 2P~1(27 — 1). Show that the sum of all the the positive integer divisors of
n (not including n itself) is equal to 2n.

Solution: Set ¢ = 27 — 1 and note that since ¢ is prime the divisors of n,not
including n itself, are
1,2, 22 ...,277Y and ¢, 2q, 2%, ..., 2?7 %
Summing the first collection of divisors gives
22 —1

1+2+22+ .. 42071 =
+242° 4.+ 5T

2P —1=g¢q



while the sum of the other collection of divisors gives

=11

q(1—|—2+22+...—|—2p_2)—q( 5T

) =2l —1=n—qg.
Therefore, the sum of all such divisors is precisely
qg+n—q=n,
as claimed.
. Find all real solutions to the system
BB =0

4y +2°=0
o'y + 27 =0,

Solution: Clearly (z,y,z) = (0,0,0) works. If (z,y,2) € R?® is a nontrivial
solution of the given system, then if follows that the vector (1,1,1) € R?
is orthogonal to the three vectors (23,33, 23), (2°,¢° 2°), and (z7,y",2"), and
hence these latter three vectors must be linearly dependent, i.e.

oy 28 1 1
O=det | 2° 3° 2° | = (wyz)*det [ 2% 32 22
ooy T wogh o

= —(zy2)’(a® — y*)(2® = 2°)(y* — 2°).
It follows that either 22 = 2, 2% = 22, or else y? = 2°.

Now, notice that if any two of z, y, 2 are the same, then =z = y = z = 0. Indeed,
if z = y, for example, then the first and second of the given equations imply
that z = 232 = 2"z, and hence that 2 = 0. Furthermore, it is clear that if,
for example, x = —y, then z = 0. It follows that the solutions of the given
system are given by

{(a,—a,0),(a,0,—a),(0,a,—a) : a € R}.

. Suppose that P(z) is a polynomial with integer coefficients that takes the
value 1 at three distinct integers. Prove that P(z) can not have an integer
root.

Solution: Suppose that P(r) = 0 for some integer r, and let ¢ be an integer
with P(a) = 1. Then clearly P(a) — P(r) = 1 and hence, since P has integer
coefficients, it follows that the integer a — r divides 1. But then a — r = +1
which only gives two possibilities for the root a, not three. Thus, no such
polynomial can exist.



10. Let n > 2 be a fixed integer and a > 0. Determine all functions f(z) that are
bounded on 0 < z < a and which satisfy the functional equation

fﬁﬂ:ﬁaQ(§)+f(x2“)+.“+f(£tg5£m>)

for all x € (0,a).

Solution: First, since f is bounded there exists a M > 0 such that |f(x)| < M
for all € (0,a). Next, notice that for every £k =0,1,2,...(n — 1) and z € (0,q)

we have

x+ ka

0< <a
n
and hence L
() s

n

for every £k =0,1,2,...,n — 1. From the functional equation, it follows that
1 K

for all z € (0, a), effectively improving our upper bound by a factor of £. From
the functional equation again, we find

e Hels il SR S
n n n n

1 (K K K K K
S5
for all z € (0,a). Continuing in this way, we find that, for every j =0,1,2,...

we have the uniform bound |f(z)| < £ valid for all z € (0,a). Taking j — oo
implies that f(z) = 0 for all x.



