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1. Show that ∫ 1

0

ln(x)

x− 1
dx =

∞∑
n=1

1

n2
.

Solution: Integrate by parts, using (1− x)−1 =
∑∞

n=0 x
n for |x| < 1.

2. Let a ∈ (0, 1) be fixed. Determine all non-negative continuous functions f
on [0, 1] (or prove that one does not exist) which satisfy the following three
conditions:∫ 1

0

f(x)dx = 1,

∫ 1

0

xf(x)dx = a, and

∫ 1

0

x2f(x)dx = a2.

Solution: No such function exists since then∫ 1

0

(a− x)2f(x)dx = a2
∫ 1

0

f(x)dx− 2a

∫ 1

0

xf(x)dx+

∫ 1

0

x2f(x)dx = 0.

Since (a − x)2 is non-negative, it follows that we must have f(x) = 0. But
then this function does not satisfy the given conditions since a > 0. Thus,
no function exists.

3. Suppose that 0 < α < β < γ. Show that the equation

αx + βx = γx

has at most one real solution.

Solution

Observe that αx + βx = γx ⇔
(
α
γ

)x
+
(
β
γ

)x
− 1 = 0. Let f(x) =

(
α
γ

)x
+
(
β
γ

)x
− 1

and note that this is a smooth function. Then,

f ′(x) =

(
α

γ

)x
log

(
α

γ

)
+

(
β

γ

)x
log

(
α

γ

)
< 0

since log
(
α
γ

)
, log

(
α
γ

)
< 0. Therefore, f(x) is strictly increasing on R and

hence has at most one real zero.

4. Two players A and B play a game with 2021 other persons. All 2021 people are
arranged in a circle in such a way that A and B are not in initially adjacent
positions. A and B play alternately, with A going first, and a play consists of
choosing one of their two immediate neighbors, who is then removed from
the circle. The player (A or B) who removes the other player wins the game.
Describe, with proof, a winning strategy for one of the players.



Solution: A clearly can always win since one of the arcs between A and
B will have an even number of people while the other will have an odd
number (since 2021 is odd). At each play, player A either eliminates B (if
they are neighbors), or else A eliminates the neighbor along the “odd" arc.
This leaves an odd number of people on both arcs between A and B. When
B chooses then, they can not choose A and hence will leave an odd and an
even arc for A to choose from. The total number of persons is reduced by
one after each play, so eventually B will leave zero people on one of the arcs,
and A will then win by removing B.

5. Let I be the n × n identity matrix. Prove that AB − BA 6= I for any n × n
matrices A and B.

Solution: Let A = (aij)n×n and B = (bij)n×n. Then the sum of the diagonal
(i.e., the trace) of AB −BA is

n∑
i=1

(
n∑
j=1

aijbji −
n∑
j=1

bijaji

)
= 0.

Therefore, AB −BA 6= I.

6. For n = 1, 2, 3, . . . , let

In =

∫ 1

0

tn−1

(t+ 1)n
dt.

(i) Show that In+1 6
1

2
In.

(ii) Show also that In+1 = −
1

n 2n
+ In.

(iii) Deduce that In 6
1

n 2n−1
.

(iv) Prove that log 2 =
n∑
r=1

1

r 2r
+ In+1 and hence show that

2

3
< log 2 6

17

24
.

Solution

(i) Since 0 6 t 6 1 implies
t

t+ 1
6

1

2
, we have

In+1 =

∫ 1

0

tn

(t+ 1)n+1 dt =

∫ 1

0

t

t+ 1
· tn−1

(t+ 1)n
dt 6

∫ 1

0

1

2
· tn−1

(t+ 1)n
dt =

1

2
In.

(ii) Integrating by parts, we have

In+1 =

∫ 1

0

tn

(t+ 1)n+1 dt =

[
− 1

n

tn

(t+ 1)n

]1
t=0

+

∫ 1

0

tn−1

(t+ 1)n
dt = − 1

n 2n
+ In.



(iii) Combining parts (i) and (ii), we have

− 1

n 2n
+ In 6

1

2
In ⇒ In 6

1

n 2n−1
.

(iv) From (ii), we observe that

n∑
r=1

1

r 2r
=

n∑
r=1

(Ir − Ir+1) = (I1 − I2) + (I2 − I3) + . . .+ (In−1 − In) + (In − In+1)

i.e.
n∑
r=1

1

r 2r
= I1 − In+1. Moreover, I1 =

∫ 1

0
1
t+1

dt = [log(t+ 1)]1t=0 = log 2.

Therefore, log 2 =
n∑
r=1

1

r 2r
+ In+1 for all n = 1, 2, 3, . . . .

In particular, for n = 2 we have

log 2 =
2∑
r=1

1

r 2r
+ I3

(iii)
6

1

2
+

1

8
+

1

12
=

17

24
.

Moreover,

log 2 >
3∑
r=1

1

r 2r
=

1

2
+

1

8
+

1

24
=

16

24
=

2

3
.

7. If a, b, and c are positive real numbers with abc = 1, prove that

ab+cbc+aca+b ≤ 1.

Solution: Without loss of generality, we may assume a ≤ b ≤ c so that, by
assumption a ≤ 1 and c ≥ 1. Using b = 1/(ac) we can rewrite

ab+cbc+aca+b =
ab−a

cc−b
,

which is clearly at most one since b− a, c− b ≥ 0.

8. The triangle OAB is isosceles, with OA = OB and angle BÔA = 2α where
0 < α < π/2. The semicircle C0 is centered at the midpoint of the base AB of
the triangle, and the sides OA and OB are both tangent to the semicircle.
The curves C1, C2, C3, . . . are circles such that Cn is tangent to Cn−1 and also
to the sides OA and OB of the triangle. Let rn be the radius of Cn. Let S be
the total area of the semicircle C0 and the circles C1, C2, C3, . . . . Show that

S =
1 + sin2 α

4 sinα
πr20.



Hint: First show that
rn+1

rn
=

1− sinα

1 + sinα
.

Solution

For each n = 0, 1, 2, . . . let Kn denote the center of Cn and let Ln and Rn

denote the points of contact of Cn with OA and OB, respectively. The key
observation is that, since Cn is tangent to OA and OB, the triangles OLnKn

and OKnRn are right-angled at Ln and Rn respectively. Moreover, since OA =
OB, the median OK0 is the bisector of BÔA and the perpendicular bisector
of AB. Therefore, OK0 goes through the centers Kn for all n = 1, 2, 3, . . . . In
turn, LnÔKn = KnÔRn = α. Then, working in the triangle OLnKn we have

rn = (OKn) sinα, n = 1, 2, 3, . . . .

Hence, since (OKn) = (OKn+1) + rn + rn+1 and α ∈ (0, π/2),

rn
sinα

=
rn+1

sinα
+ rn + rn+1 ⇔ (1− sinα)rn = (1 + sinα)rn+1 ⇔

rn+1

rn
=

1− sinα

1 + sinα
.

Using this relation recursively, we obtain

rn =

(
1− sinα

1 + sinα

)n
r0, n = 0, 1, 2, . . . .

Therefore, we have

S =
1

2
πr20 + π

∞∑
n=1

r2n =
1

2
πr20 + πr20

∞∑
n=1

(
1− sinα

1 + sinα

)2n

=
1

2
πr20 + πr20 ·

(
1−sinα
1+sinα

)2
1−

(
1−sinα
1+sinα

)2
which simplifies to the desired result.

9. Let

A = {(a, b) | a, b ∈ Z, 3a+ 7b is an integer multiple of 11}
B = {(a, b) | a, b ∈ Z, a− 5b is an integer multiple of 11} .

Please prove or disprove: A = B.

Solution

They are indeed equal, we see the divisibility criteria are logically equivalent:

11|(3a+ 7b) ⇐⇒ 11|4(3a+ 7b) ⇐⇒ 11|(4(3a+ 7b)− 11(a+ 3b)) ⇐⇒ 11|(a− 5b).



10. An attempt is made to move a rod of length L from a horizontal corridor of
width a into a horizontal corridor of width b, where a 6= b. The corridors meet
at right angles, and the rod remains horizontal. Show that if the attempt is
to be successful then

L 6
a

sinα
+

b

cosα
where tan3 α =

a

b
.

α

a

b

L

Solution

The attempt will fail if the rod is long enough so that at some instance its
two ends are touching the outer walls of the corridors while an interior point
is touching the interior corner (right angle). Then, denoting by α the (acute)
angle formed by the rod and the first corridor, we have

sinα =
a

L1

⇒ L1 =
a

sinα
, cosα =

b

L2

⇒ L2 =
b

cosα

thus L = L1 + L2 = a
sinα

+ b
cosα

. Note that this is a family of lengths which
depends on α and for which the attempt fails. Thus, our condition on L
such that the attempt succeeds should be that L 6 Lmin , where Lmin is the
minimum length for which the attempt fails. Hence, we must have

L 6
a

sinα
+

b

cosα

with α such that the right-hand side is minimized. This is found by differ-
entiating with respect to α and setting to zero:

d

dα

(
a

sinα
+

b

cosα

)
= 0 ⇔ −a cosα

sin2 α
+
b sinα

cos2 α
= 0 ⇔ tan3 α =

a

b
.

Alternates

11. Find the general solution to the differential equation

dy

dx
=
y

x
− 1

y
.



Solution
Multiplying both sides by y, we have

y
dy

dx
=
y2

x
− 1 ⇒ 1

2

d

dx

(
y2
)
=
y2

x
− 1.

This motivates us to set u = y2, which turns our equation into

1

2

du

dx
=
u

x
− 1 ⇒ du

dx
− 2

x
u = −2.

This is a first-order linear ODE which can be solved via the integrating factor
method. In particular, we have

d

dx

(
x−2u

)
= −2x−2 ⇒ x−2u = −2

∫
x−2dx = 2x−1 + C, C = const.

Therefore, u = y2 = 2x+ Cx2.

12. Evaluate the limit

L := lim
x→∞

(x+ 3)

∫ x2

x

dy

y(y + 2021)5/2
dy.

Solution: This is relatively easy, but not an easy limit to guess: Since the quan-
tity y(y + 2021)5/2 is strictly increasing for y > 0 we have that∫ x2

x

dy

y(y + 2021)5/2
≤
∫ x2

x

dy

x(x+ 2021)5/2
=

x2 − x
x(x+ 2021)5/2

.

Thus, for all x > 0 we have

0 < (x+ 3)

∫ x2

x

dy

y(y + 2021)5/2
dy 6 (x+ 3)

x2 − x
x(x+ 2021)5/2

.

Since the right-hand side tends to 0 as x→∞, we conclude that the limit is 0 by
the squeeze theorem.


