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Solutions

1. Please find the largest value of n ∈ N so that 21n divides 2024!

Solution:

Since 21 = 3 · 7, we need to find the exponent on 7 in the prime factorization of 2024!.
This is given by Legendre’s Formula⌊

2024

7

⌋
+

⌊
2024

72

⌋
+

⌊
2024

73

⌋
= 289 + 41 + 5 = 335.

This works because there are
⌊
2024
7

⌋
numbers in the range 1, 2, · · · 2024 divisible by 7.

Each of these numbers contributes at least a single 7 to the prime factorization of
2024! = 1 · 2 · · · 2024. There are

⌊
2024
72

⌋
numbers in the range divisible by 49 (and each of

these contribute an additional 7), and so on and so forth. The same method can be
used to compute the exponent on 3 (which will result in a larger exponent). The smaller
of the two exponents on 3, 7 determine divisibility by 21. Therefore, the largest value of
n is 335.

2. Suppose that

3 =
2

x1

= x1 +
2

x2

= x2 +
2

x3

= x3 +
2

x4

= . . .

Guess an expression, in terms of n, for xn. Then, prove rigorously the correctness of
your guess.

Solution:

Note that each equality can be written as

3 = xn +
2

xn+1

⇔ xn+1 =
2

3− xn

.

We find x1 =
2
3
, x2 =

6
7
, x3 =

14
15
, x4 =

30
31

. Thus, our guess is

xn =
2n+1 − 2

2n+1 − 1
.

In order to establish this expression rigorously, we use induction. The expression is
true for n = 1. Assuming it holds for n, we look at xn+1. From the recursion relation
above, we have

xn+1 =
2

3− xn

=
2

3− 2n+1−2
2n+1−1

= . . . =
2n+2 − 2

2n+2 − 1

as desired, thereby concluding the proof.



3. A random number generator selects one of the nine integers 1, 2, . . . 9 with uniform
probability. Please determine the probability that after n selections, the product of the
n numbers will be divisible by 10.

Solution:

The product of the n numbers will be divisible by 10 if and only if at least one even
number is selected and 5 is selected at least once. Let

A = event at least one even number is selected

B = event 5 is selected at least once

We are trying to find P (A∩B). It is easier to calculate the probability of the complement

P ((A ∩B)C) = P (AC ∪BC) = P (AC) + P (BC)− P (AC ∩BC).

Now observe that

P (AC) = P (all the numbers are one of the 5 odd numbers) =
5n

9n

P (BC) = P (none of the numbers are 5) =
8n

9n

P (AC ∩BC) = P (all of the numbers are one of 1, 3, 7, 9) =
4n

9n
.

Therefore, P ((A ∩B)C) =
5n

9n
+

8n

9n
− 4n

9n
, and hence

P (A ∩B) = 1− 5n

9n
− 8n

9n
+

4n

9n
.



4. The diagram below shows what is known as a (regular) Reuleaux heptagon. The seven
arcs AB,BC, . . . , FG,GA are of equal length and each arc is formed from the circle of
radius a having its center at the vertex diametrically opposite the midpoint of the arc.
Compute the area of the Reuleaux heptagon (in terms of a).

Solution:

In the figure, the point O is equidistant from each of three vertices A, B and E. The plan
is to find the area of the sector AOB by calculating the area of AEB and subtracting the
areas of the two congruent isosceles triangles OBE and OAE. The required area is 7
times this. First we need the angle AEB. We know that the angle AOB = 2

7
π and hence

the angle BOE = 1
2
(2π − 2

7
π) = 6π (using the sum of angles round the point O). Finally,

the angle AEB = 2OEB = 2 · 1
2
(π − 6

7
π) = 1

7
π using the sum of angles of an isosceles

triangle.

Now ABE is a sector of a circle of radius a, so its area is

πa2 ·
1
7
π

2π
=

πa2

14
.

The area of the triangle OBE is 1
2
BE · height i.e.

1

2
a · 1

2
a tan(angle OBE) =

a2

4
tan

π

14
.

The area of the heptagon is therefore

7 ·
(
πa2

14
− 2 · a

2

4
tan

π

14

)
=

a2

2

(
π − 7 tan

π

14

)
.



5. Suppose that for n ∈ N, n = 1 mod 4 or n = 2 mod 4. Please prove that∫ π

0

cos(x) · cos(2x) · · · cos(nx) dx = 0.

Solution:

We first apply a substitution u = x− π
2
,∫ π

2

−π
2

cos
(
u+

π

2

)
· cos

(
2
(
u+

π

2

))
· · · cos

(
n
(
u+

π

2

))
dx.

Observe that

cos
(
k
(
u+

π

2

))
= cos(ku) cos

(
kπ

2

)
− sin(ku) sin

(
kπ

2

)
.

Now there are 4 cases, depending on what k is congruent to mod 4.

k = 0 mod 4 : cos
(
k
(
u+

π

2

))
= cos(ku)

k = 1 mod 4 : cos
(
k
(
u+

π

2

))
= − sin(ku)

k = 2 mod 4 : cos
(
k
(
u+

π

2

))
= − cos(ku)

k = 3 mod 4 : cos
(
k
(
u+

π

2

))
= sin(ku)

Thus the terms in the product cos
(
u+ π

2

)
· cos

(
2
(
u+ π

2

))
· · · cos

(
n
(
u+ π

2

))
alternate be-

tween these 4 cases (starting with k = 1). The resulting product will be an odd function
precisely when sin occurs an odd number of times in the product. Clearly this only
occurs when n = 1 mod 4 or n = 2 mod 4.



6. Frosty the snowman is made from two uniform spherical snowballs, initially of radii 2R
and 3R. The smaller (which is the head) stands on top of the larger. As each snowball
melts, its volume decreases at a rate which is directly proportional to its surface area,
the constant of proportionality being the same for each snowball. During melting, the
snowballs remain spherical and uniform.

(i) When Frosty is half its initial height, show that the ratio of its volume to its initial
volume is 37 : 224.

(ii) What is this ratio when Frosty is one tenth of its initial height?

Solution: Based on the rate of change of the volume of each sphere, we have

d

dt

4

3
πr3 = k · 4πr2

where r is the radius of the sphere and k is a (negative) constant which is the same for
both spheres. Thus,

dr

dt
= k ⇒ r = kt+ r0

where r0 = r(0) is the initial value of r.

Now, for the head we have r0 = 2R while for the body r0 = 3R. Hence, we find

rhead = kt+ 2R, rbody = kt+ 3R.

The snowman’s height is

h = 2 (rhead + rbody) = 4kt+ 10R.

So, h(0) = 10R and hence the height becomes half the initial one when

4kt+ 10R = 5R ⇒ kt = −5

4
R.

Then, the ratio of volumes is

rhead(−5
4
R/k)3 + rbody(−5

4
R/k)3

rhead(0)3 + rbody(0)3
=

(3
4
R)3 + (7

4
R)3

(2R)3 + (3R)3
=

27 + 343

64 · 35
=

37

224
.

Moreover, when h = h(0)/10 = R it is important to note that the formula for the height
implies

4kt+ 10R = R ⇒ kt = −9

4
R.

At this value of kt, however, the radius of the head would be negative. Indeed, the head
melts fully at kt = −2R and after that point the height of the snowman is just twice the
radius of the body. Hence, when the snowman has height R it must be that rbody = 1

2
R

and then the ratio of the volumes is

r3body

rhead(0)3 + rbody(0)3
=

(R
2
)3

(2R)3 + (3R)3
=

1

8 · 35
=

1

280
.



7. Please prove that coefficient of ak in the expansion of (1 + a+ a2 + a3)n is

k∑
i=0

(
n

i

)(
n

k − 2i

)

(assume that
(
n
r

)
= 0 for n ∈ N and r < 0)

Solution:

Rewriting and applying Binomial Theorem

(1 + a+ a2 + a3)n = ((1 + a) + a2(1 + a))n

= (1 + a)n(1 + a2)n.

All powers of a in the expansion of (1 + a2)n are even. A typical term in the expansion of
(1 + a2)n is of the form (

n

i

)
a2i.

This will multiply with a term of the form(
n

k − 2i

)
ak−2i

in the expansion of (1 + a)n to make an ak term (but only for k − 2i ≥ 0). Adding up the
coefficients of all such parings yields the desired equality.

8. Let f(x) be a continuous function defined for x ∈ [0, 1] and a be a real number such that∫ 1

0

eax (f(x))2 dx = 2

∫ 1

0

f(x)dx+
e−a

a
− 1

a2
− 1

4
.

Find a and f(x).

Solution: Starting from the given relation, we complete the square to get∫ 1

0

(
e

ax
2 f(x)− e−

ax
2

)2
dx = −

∫ 1

0

e−axdx+
e−a

a
− 1

a2
− 1

4

or, computing the integral on the right-hand side,∫ 1

0

(
e

ax
2 f(x)− e−

ax
2

)2
dx =

1

a
− 1

a2
− 1

4
=

4a− 4− a2

4a2
= −(a− 2)2

4a2
≤ 0.

Thus, since
∫ 1

0

(
e

ax
2 f(x)− e−

ax
2

)2
dx ≥ 0, we infer∫ 1

0

(
e

ax
2 f(x)− e−

ax
2

)2
dx = −(a− 2)2

4a2
= 0.

Hence, a = 2. Moreover, since
(
e

ax
2 f(x)− e−

ax
2

)2 ≥ 0, it must be (using also continuity)
that (

e
ax
2 f(x)− e−

ax
2

)2
= 0 ∀x ∈ [0, 1]

i.e. f(x) = e−ax = e−2x.



9. For each positive integer n, let

an =
1

n+ 1
+

1

(n+ 1)(n+ 2)
+

1

(n+ 1)(n+ 2)(n+ 3)
+ . . .

(i) Prove that 0 < an < 1
n
.

(ii) Show that an = n!e− ⌊n!e⌋, where ⌊x⌋ ∈ Z denotes the integer part (or floor) of x > 0.

(iii) Hence, prove that e is irrational.

Solution: For (i), it is immediate that an > 0 and also we observe that

an <
1

n+ 1
+

1

(n+ 1)2
+

1

(n+ 1)3
+ . . . =

∞∑
j=1

(
1

n+ 1

)j

=
1

n+1

1− 1
n+1

=
1

n
.

For (ii), we note that, from (i), an ∈ (0, 1). In addition, from the Taylor series for ex we
have

e = 1 + 1 +
1

2!
+

1

3!
+ . . .+

1

n!
+

1

(n+ 1)!
+

1

(n+ 2)!
+ . . .

and so
n!e = n! + n! +

n!

2!
+

n!

3!
+ . . .+ 1 +

1

n+ 1
+

1

(n+ 1)(n+ 2)
+ . . .

i.e. n!e = n!+n!+ n!
2!
+ n!

3!
+ . . .+1+an. Since all of the terms on the right-hand side except

for an are integers, and since an ∈ (0, 1), it follows that an = n!e− ⌊n!e⌋.

Finally, for (iii), suppose to the contrary that e = k/m where k,m ∈ Z. Then, m!e is
an integer and so ⌊m!e⌋ = m!e. But then m!e − ⌊m!e⌋ = 0, which contradicts (ii) since
am ∈ (0, 1).



10. Let P1, P2, P3, P4, P5 by any 5 points in the plane R2 and A be the 5 × 5 matrix whose
(i, j)−entry aij is the square of the distance from Pi to Pj (given by the standard distance
formula). Please prove that the determinant of A is 0

det(A) = 0.

hint: interpret the problem in terms of vectors.

Solution:

Let vi denote the vector from P1 to Pi, 1 ≤ i ≤ 4.

Then the distance from P2 to P3 is the magnitude of v1 − v2, and so on. Recalling that
|u|2 = u · u, we see that A can be expressed as

A =


0 v1 · v1 v2 · v2 v3 · v3 v4 · v4

v1 · v1 0 (v1 − v2) · (v1 − v2) (v1 − v3) · (v1 − v3) (v1 − v4) · (v1 − v4)

v2 · v2 (v1 − v2) · (v1 − v2) 0 (v2 − v3) · (v2 − v3) (v2 − v4) · (v2 − v4)

v3 · v3 (v1 − v3) · (v1 − v3) (v2 − v3) · (v2 − v3) 0 (v3 − v4) · (v3 − v4)

v4 · v4 (v1 − v4) · (v1 − v4) (v2 − v4) · (v2 − v4) (v3 − v4) · (v3 − v4) 0


Expanding the dot products (and writing vi · vi as v2

i ),

A =


0 v2

1 v2
2 v2

3 v2
4

v2
1 0 v2

1 − 2v1v2 + v2
2 v2

1 − 2v1v3 + v2
3 v2

1 − 2v1v4 + v2
4

v2
2 v2

1 − 2v1v2 + v2
2 0 v2

2 − 2v2v3 + v2
3 v2

2 − 2v2v4 + v2
4

v2
3 v2

1 − 2v1v3 + v2
3 v2

2 − 2v2v3 + v2
3 0 v2

3 − 2v3v4 + v2
4

v2
4 v2

1 − 2v1v4 + v2
4 v2

2 − 2v2v4 + v2
4 v2

3 − 2v3v4 + v2
4 0


Apply the sequence of row operations Ri = −R1+Ri for 1 ≤ i ≤ 4 (leaving the determinant
unchanged). 

0 v2
1 v2

2 v2
3 v2

4

v2
1 −v2

1 v2
1 − 2v1v2 v2

1 − 2v1v3 v2
1 − 2v1v4

v2
2 −2v1v2 + v2

2 −v2
2 v2

2 − 2v2v3 v2
2 − 2v2v4

v2
3 −2v1v3 + v2

3 −2v2v3 + v2
3 −v2

3 v2
3 − 2v3v4

v2
4 −2v1v4 + v2

4 −2v2v4 + v2
4 −2v3v4 + v2

4 −v2
4





Now apply the sequence of column operations Ci = −C1 + Ci for 1 ≤ i ≤ 4 (again leaving
the determinant unchanged).

0 v2
1 v2

2 v2
3 v2

4

v2
1 −2v2

1 −2v1v2 −2v1v3 −2v1v4

v2
2 −2v1v2 −2v2

2 −2v2v3 −2v2v4

v2
3 −2v1v3 −2v2v3 −2v2

3 −2v3v4

v2
4 −2v1v4 −2v2v4 −2v3v4 −2v2

4


The maximum number of linear independent vectors is 2 in R2, so there is no loss of
generality in assuming that v3 and v4 are linear combinations of v1 and v2 (swapping
rows if necessary). So there exists a, b, c, d ∈ R so that v3 = av1 + bv2 and v4 = cv1 + dv2.
Then after we apply the row operations R3 = −aR1 − bR2 +R3 and R4 = −cR1 − dR2 +R4,
our matrix has the form


0 v2

1 v2
2 v2

3 v2
4

v2
1 −2v2

1 −2v1v2 −2v1v3 −2v1v4

v2
2 −2v1v2 −2v2

2 −2v2v3 −2v2v4

∗ 0 0 0 0

∗ 0 0 0 0

 .

To see this, note that a generic entry in the 3rd row becomes

2av1 · vi + 2bv2 · vi − 2v3 · vi = 2((av1 + bv2 − v3) · vi)

= 0 · vi = 0,

and similarly for the entries in the 4th row. Now we can infer a vanishing determinant
by cofactor expansion along the 4th or 5th row.

.


