Analysis PSU Math Relays 2018

- For each problem place your answer in the appropriate blank on the answer sheet provided.
- Simplify each answer as far as possible. Write numerical answers in exact form, such as fractions or radicals, rather than decimal approximations.
- You may **not** use a calculator on this test.

In problems 1–4 find the indicated limit.

1.
$$\lim_{x \to 2} \frac{x^2 - 4}{x^2 - 5x + 6}$$

2.
$$\lim_{x \to \infty} \frac{-2x^2 + 5}{3x^2 - 2x + 1}$$

3.
$$\lim_{\theta \to 0} \frac{\tan 3\theta}{4\theta}$$

4.
$$\lim_{x \to 0^+} f(x), \text{ where } f(x) = \begin{cases} x^2 & \text{if } x \le 0\\ 3x - 1 & \text{if } x > 0 \end{cases}$$

In problems 5–7 Let $f(x) = x^{3/2}$.

- 5. f(9) = ?
- 6. f'(0) = ?
- 7. $f^{(3)}(4) = ?$

In problems 8–12 find the indicated derivative.

8.
$$y = \sqrt{x^2 - 6x + 5}, \quad \frac{dy}{dx} = ?$$

9. $f(t) = \tan(3t), f'(t) = ?$
10. $f(x) = te^{t^2 - 3t}, \quad f'(t) = ?$
11. $g(x) = \ln(x^2 + 2), \quad g'(x) = ?$
12. $y = \int_0^{\cos x} \frac{1}{\sqrt{1 - t^2}} \, dt \text{ with } 0 < x < \pi, \quad \frac{dy}{dx} = ?$

13. Find the slope-intercept form of the equation for the tangent line to the curve defined by the function $y = \sqrt{x}$, at x = 4.

In problems 14–19 let $f(x) = x^5 - 20x + 1$. Use the interval notation (a, b) to write intervals in your answers.

- 14. Find the interval(s) on which f is increasing.
- 15. Find the interval(s) on which f is decreasing.
- 16. Find the interval(s) on which f is concave up.
- 17. Find the interval(s) on which f is concave down.
- 18. Find the x value(s) at which f has a local maximum.
- 19. Find the x value(s) at which f has a local minimum.
- 20. Find the absolute maximum value of the function $f(x) = \sin x \cos x$ on the interval $[0, 2\pi]$.

In problems 21–24 evaluate the indicated integral.

21.
$$\int_{0}^{3} \sqrt{x+1} dx$$

22.
$$\int_{0}^{2} \frac{2x^{3}}{\sqrt{9+x^{4}}} dx$$

23.
$$\int y^{2} e^{y} dy$$

24.
$$\int_{0}^{\pi/6} \cos^{2} x dx$$

25. Find the area of the region bounded by the graph of $y = |\cos x|$ and the x-axis from $x = -\pi$ to $x = \pi$.