PSU Math Relays		Potpourri		2018			
Shade the appropriate region on the answer sheet. Choice "none" represents "none of these".							
		$(y+2)^2 = 9$, which one c					
(a) $x \leq 8$	(b) $x \ge 9$	(c) $y = -2$	(d) $y \ge 0$	(e) none			
2. What time is it 100 h	ours after 3 pm ?						
(a) 2 am	(b) noon	(c) 5 pm	(d) 7 pm	(e) none			
3. Suppose that the yolk How many ounces do		nd the total weight of an egg	and 2 yolks weigh a total α	of 3 ounces.			
(a) 7.5	(b) 22.5	(c) 25	(d) 45	(e) none			
4 For real numbers A	B and $C \cdot A(B+C) =$	= (B+C)A is an example of	of				
	property of addition	(b) the commutative pro					
(c) the associative pr(e) none	operty of addition	(d) the associative prope	rty of multiplication				
5. For real numbers A, A	B, and C ; $A(B+C) =$	= A(C+B) is an example of	of				
(a) the commutative(c) the associative pr(e) none	property of addition operty of addition	(b) the commutative pro (d) the associative prope	perty of multiplication rty of multiplication				
6. For real numbers A, A	B, and C ; $A(BC) = (A)$	BC)A is an example of					
(a) the commutative	property of addition operty of addition	(b) the commutative pro- (d) the associative prope	perty of multiplication rty of multiplication				
7. The volume of a cone	with a base radius of	r and a height of h is					
(a) $\frac{1}{3}\pi r^2 h$	(b) $\frac{1}{4}\pi r^2 h$	0	(d) $\frac{1}{4}\pi r^3 h$	(e) none			
8. If the probability tha will make 3 free throw		blayer will make a free thro	w is 0.70 , what is the prob	pability she			
(a) $3/5$	(b) $21/50$	(c) $3087/10000$	(d) $7/20$	(e) none			
9 If A and B are mutur	ally exclusive events x	which of the following must	he true?				
	-	$P(B)$ (c) $P(A \cup B) = 0$		(e) none			
10. How many lines of sy	mmetry are there for	a square?					
(a) 6	(b) 7	(c) 8	(d) 9	(e) none			
11. The equation for the (a) $x^2 + y^2 = 16$ (b)		with center $(-1, 2)$ is = 12 (c) $(x+1)^2 + (y-2)^2$	$(x^2)^2 = 20$ (d) $x^2 + y^2 = 30$	(e) none			
12. The minimum value of	of $f(x) = 3x^2 - 4x - 5$	2 is					
(a) 4	(b) -2 $-4x - 2$		(d) $-\frac{5}{3}$	(e) none			
			0				
		$3x \text{ from } x_1 = -2 \text{ to } x_2 = 0$		(-)			
(a) 2	(b) 1	(c) 0	(d) -2	(e) none			
				page 1 of 3			

PSU Math Relays

Potpourri

14.	Angle A measures 45° . (a) $\frac{2\pi}{3}$	The measure of the sup (b) $\frac{\pi}{3}$	plement of A in radians i (c) $\frac{3\pi}{4}$	s (d) $\frac{\pi}{2}$	(e) none	
15.	If $f(x) = \frac{3x}{x+1}$, then j	$f^{-1}(x)$ is				
	(a) $\frac{3x}{x-1}$	(b) $\frac{-3x}{x+1}$	(c) $\frac{x+1}{3x}$	(d) $\frac{x}{x+3}$	(e) none	
16.	If $\sin x < \cos x$, $\sin x =$ (a) $\frac{\pi}{4}$	$-\frac{\sqrt{2}}{2}$, and $0 \le x < 2\pi$, (b) $\frac{3\pi}{4}$	then x is (c) $\frac{5\pi}{4}$	(d) $\frac{7\pi}{4}$	(e) none	
17.	The base 7 value of the (a) $285 \frac{3}{7}$	e base 10 number 1998 i (b) 2005	(c) 5553	(d) 6234	(e) none	
18.	Six balls numbered 1 th the sum of the 2 ball se		bag and 2 are drawn at a	random. What is the proba	ability that	
	(a) 0.2	(b) $\frac{1}{15}$	(c) $\frac{1}{6}$	(d) $\frac{2}{15}$	(e) none	
19.	If $2x - 3y = 8$ and $4x - 4x = 1$					
00	(a) -2	(b) -1	(c) 1	(d) 2	(e) none	
20.	The solution set of $ x - (a) \{2\}$		(c) $\{2, 8\}$	(d) $\{3\}$	(e) none	
21	21. The value of $\frac{1000!}{999!} \cdot \frac{99!}{100!}$ is					
<i>2</i> 1.	The value of $\frac{1}{0001}$ · $\frac{1}{10}$	$\overline{18}$				
21.		(b) 100	(c) 1,000	(d) 10,000	(e) none	
	(a) 10 For the numbers: 3,5,7	(b) 100		(d) $10,000$ ne median. Which of the f		
	(a) 10For the numbers: 3,5,7true?	(b) 100 7,9,12, let \bar{x} denote the	mean and x_m denote the			
22.	(a) 10 For the numbers: 3,5,7 true?	(b) 100 7,9,12, let \bar{x} denote the (b) $x_m > \bar{x}$	mean and x_m denote the	ne median. Which of the	following is	
22. 23.	(a) 10 For the numbers: 3,5,7 true? (a) $x_m < \bar{x}$ Which of the following	(b) 100 7,9,12, let \bar{x} denote the (b) $x_m > \bar{x}$ is not prime? (b) 125,845,999	mean and x_m denote th (c) $x_m = \bar{x}$ (c) 5,486,603	the median. Which of the final (d) $x_m < 7$	following is (e) none	
22. 23.	(a) 10 For the numbers: 3,5,7 true? (a) $x_m < \bar{x}$ Which of the following (a) 7,555,549	(b) 100 7,9,12, let \bar{x} denote the (b) $x_m > \bar{x}$ is not prime? (b) 125,845,999	mean and x_m denote th (c) $x_m = \bar{x}$ (c) 5,486,603	the median. Which of the final (d) $x_m < 7$	following is (e) none	
22.23.24.	(a) 10 For the numbers: 3,5,7 true? (a) $x_m < \bar{x}$ Which of the following (a) 7,555,549 If $V(r)$ is the volume of (a) $2V(r)$ The area of a circle inst	(b) 100 7,9,12, let \bar{x} denote the (b) $x_m > \bar{x}$ is not prime? (b) 125,845,999 f a sphere of radius r , t (b) $8V(r)$	mean and x_m denote th (c) $x_m = \bar{x}$ (c) 5,486,603 hen $V(2r)$ is (c) $(V(r))^2$ h is inscribed in a circle of	the median. Which of the f (d) $x_m < 7$ (d) 13,479,842 (d) $\frac{32\pi}{3}$	following is (e) none (e) none	
22.23.24.25.	(a) 10 For the numbers: 3,5,7 true? (a) $x_m < \bar{x}$ Which of the following (a) 7,555,549 If $V(r)$ is the volume of (a) $2V(r)$ The area of a circle ins (a) $\sqrt{2}$ cm ²	(b) 100 7,9,12, let \bar{x} denote the (b) $x_m > \bar{x}$ is not prime? (b) 125,845,999 f a sphere of radius r , t (b) $8V(r)$ cribed in a square which (b) $\sqrt{2}/2 \text{ cm}^2$ $B = \{2, 3, 4, 5, 6\}$, and C	mean and x_m denote th (c) $x_m = \bar{x}$ (c) 5,486,603 hen $V(2r)$ is (c) $(V(r))^2$ h is inscribed in a circle of	the median. Which of the f (d) $x_m < 7$ (d) $13,479,842$ (d) $\frac{32\pi}{3}$ of radius 1 cm is (d) $\pi/2 \text{ cm}^2$ $\cap B$ is	following is (e) none (e) none (e) none	
 22. 23. 24. 25. 26. 	(a) 10 For the numbers: 3,5,7 true? (a) $x_m < \bar{x}$ Which of the following (a) 7,555,549 If $V(r)$ is the volume of (a) $2V(r)$ The area of a circle ins (a) $\sqrt{2}$ cm ² If $A = \{1, 2, 3, 6, 7, 8\},$ (a) $\{1, 2, 3, 4, 5, 6, 7\}$	(b) 100 7,9,12, let \bar{x} denote the (b) $x_m > \bar{x}$ is not prime? (b) 125,845,999 f a sphere of radius r , t (b) $8V(r)$ cribed in a square which (b) $\sqrt{2}/2 \text{ cm}^2$ $B = \{2, 3, 4, 5, 6\}$, and C (b) $\{2, 3, 6\}$	mean and x_m denote th (c) $x_m = \bar{x}$ (c) 5,486,603 hen $V(2r)$ is (c) $(V(r))^2$ h is inscribed in a circle of (c) $2/\pi$ cm ² $C = \{1, 3, 5, 7, 9\}$, then A	the median. Which of the f (d) $x_m < 7$ (d) $13,479,842$ (d) $\frac{32\pi}{3}$ of radius 1 cm is (d) $\pi/2 \text{ cm}^2$ $\cap B$ is	following is (e) none (e) none (e) none (e) none	
 22. 23. 24. 25. 26. 	(a) 10 For the numbers: 3,5,7 true? (a) $x_m < \bar{x}$ Which of the following (a) 7,555,549 If $V(r)$ is the volume of (a) $2V(r)$ The area of a circle ins (a) $\sqrt{2}$ cm ² If $A = \{1, 2, 3, 6, 7, 8\}, A$	(b) 100 7,9,12, let \bar{x} denote the (b) $x_m > \bar{x}$ is not prime? (b) 125,845,999 f a sphere of radius r , t (b) $8V(r)$ cribed in a square which (b) $\sqrt{2}/2 \text{ cm}^2$ $B = \{2, 3, 4, 5, 6\}$, and C (b) $\{2, 3, 6\}$ qual to	mean and x_m denote th (c) $x_m = \bar{x}$ (c) 5,486,603 hen $V(2r)$ is (c) $(V(r))^2$ h is inscribed in a circle of (c) $2/\pi$ cm ² $C = \{1, 3, 5, 7, 9\}$, then A	the median. Which of the f (d) $x_m < 7$ (d) $13,479,842$ (d) $\frac{32\pi}{3}$ of radius 1 cm is (d) $\pi/2 \text{ cm}^2$ $\cap B$ is (d) $\{1,7,8\}$	following is (e) none (e) none (e) none (e) none	

page 2 of 3

PSU Math Relays

Potpourri

28.	28. Given data points x_1, x_2, \ldots, x_k with standard deviation s, then the standard deviation of $x_1 + 3, x_2 + 3$					
	$3, \dots, x_k + 3 \text{ is}$ (a) s (b)	b) $s + 3$	(c) $s + \frac{3}{k}$	(d) $s + 3k$	(e) none	
29.	$\begin{bmatrix} 2 & 3 \\ 4 & 1 \end{bmatrix} + \begin{bmatrix} 4 & -1 & 0 \\ 3 & 2 & 4 \end{bmatrix}$ (a) $\begin{bmatrix} 6 & 2 \\ 7 & 3 \end{bmatrix}$		(2) $\begin{bmatrix} 12 & 4 \end{bmatrix}$	(4) 4	(a) none	
	$(a) \begin{bmatrix} 7 & 3 \end{bmatrix}$	$\begin{pmatrix} 0 \end{pmatrix} \begin{bmatrix} 7 & 3 & 4 \end{bmatrix}$	(c) $\begin{bmatrix} 12 & 4\\ 1 & 3 \end{bmatrix}$	(d) 4	(e) none	
30.	The value of $\sum_{k=1}^{200} (k+5)$) is				
	(a) 20000	(b) 21000	(c) 21100	(d) 21110	(e) none	
31.	$ \sqrt{6} - 17 $ is equal to (a) -1 (b)	$17 - \sqrt{6}$	(c) $\sqrt{6} + 17$	(d) $\sqrt{6} - 17$	(e) none	
32.	$\frac{\sqrt{121}}{\sqrt{6}}$ is equal to					
	(a) $11\sqrt{6}$	(b) $\frac{121\sqrt{6}}{6}$	(c) $\frac{11\sqrt{6}}{6}$	(d) 47	(e) none	
33.	The solution set of $x - (a) \{2, 9\}$	$\sqrt{3x - 2} = 4$ is (b) $\{-1\}$	(c) $\{1,2\}$	(d) $\{9\}$	(e) none	
34.	Find the three angles o than the smallest angle		le is twice the smallest a	ngle and the third angle is	28° greater	
	_	(b) $24^{\circ}, 48^{\circ}, 108^{\circ}$	(c) $30^{\circ}, 60^{\circ}, 90^{\circ}$	(d) $38^{\circ}, 76^{\circ}, 66^{\circ}$	(e) none	
35.	The sum of all of the set $(x) = 11/2$					
	(a) 11/2	(b) 3/2	(c) 5	(d) -3	(e) none	
36.	If Sally can paint a root they work together?	om in 5 hours and Bob	can paint the room in 7	hours, how long will it t	take them if	
	(a) 2 hrs. 55 min.	(b) 3 hrs. 15 min	n. (c) 6 hrs.	(d) 12 hrs.	(e) none	
37.	The volume of a sphere $1000\sqrt{2\pi}$					
	(a) $\frac{1000\sqrt{2\pi}}{3\pi}$ m ³	(b) $\frac{1000 \sqrt{2\pi}}{3} \text{ m}^3$	(c) $\sqrt{200}\pi$ m ³	(d) $4,354 \text{ m}^3$	(e) none	
38.	Which of the following (a) $A \cap B = A$			(d) $A \subseteq A \cup B$	(e) none	
39	The sum of the interior $T = T$				(0) 110110	
	(a) 720°	(b) 800°	(c) 900°	(d) 1000°	(e) none	
40.	The slope of the line ta (a) -10	angent to the graph of y (b) 19	$y = 2x^3 - 5x + 1$ at $x = 2$ (c) $5/2$	2 is (d) 3.69	(e) none	
		. /	. / /	. /		

page 3 of 3

2018