Set Theory and Logic

PSU Math Relays 2019

- There are 39 problems
- For each problem, place your answer in the appropriate blank of the answer sheet provided.
- Simplify each answer as much as possible.
- No calculators are allowed on the exam.
- Notations: Ø denotes the empty set. U denotes the universe of discourse. S^c denotes the complement of S in U. |S| is the number of elements in a finite set S. P(S) is the set of all subsets of a set S. ∨ means "or". ∧ means "and". ¬ means "not". ∀ means "for all". ∃ means "there exists".
- 1. If |A| = 21, |B| = 17, and $|A \cap B| = 3$, then $|A \cup B| = ?$
- 2. What is the converse of $p \to q$?
- 3. What is the contrapositive of $q \rightarrow p$?

In problems 4-9 let $S = \{\emptyset, x\}$. State whether the following are true or false. Please write the word true or false, DO NOT use T or F.

- 4. $\emptyset \in S$
- 5. $\{x\} \in S$
- 6. $\emptyset \subseteq S$
- 7. $\{\emptyset\} \in S$
- 8. $\{\emptyset, x\} \subseteq S$
- 9. $x \subset S$

In problems 10-13 let $A = \{1, 2, 3\}$ and $B = \{a, b, c, d\}$.

- 10. How many elements does $\mathcal{P}(B)$ have?
- 11. How many functions are there from A to B?
- 12. How many one-to-one functions are there from A to B?
- 13. How many onto functions are there from B to A?

For problems 14-17 state whether the following are true or false. Please write the word true or false, DO NOT use T or F.

- 14. If $A \cap B \cap C = \emptyset$, then $B \cap C = \emptyset$.
- 15. If $A \subseteq B$, then $A^c \subseteq B^c$.

- 16. If $A \cup B = A$, then $A \subseteq B$.
- 17. If $A \cap B = \emptyset$, then $A \subseteq B^c$.

For problems 18-25 complete the following truth tables:

	p	q	$p \wedge \neg q$
18.	T	T	
19.	T	F	
20.	F	T	
21.	F	F	

	p	q	$(p \wedge q) \vee q$
22.	T	T	
23.	T	F	
24.	F	T	
25.	F	F	

For problems 26-28 let p represent the statement, "She is intelligent," and q the statement "She reads books." Write the following statements symbolically, using the symbols p, q, \neg, \land, \lor .

- 26. Either she is intelligent or she does not read books.
- 27. She is intelligent and she does not read books.
- 28. Neither is she intelligent nor does she read books.

For problems 29-31 let \mathbb{R} be the universe of discourse. Are the following statements true or false? Please write the word true or false, DO NOT use T or F.

- 29. $\forall x \in \mathbb{R} \exists y \in \mathbb{R} : x < y.$
- 30. $\forall x \in \mathbb{R} \exists y \in \mathbb{R} : y^2 = x.$
- 31. $\forall x \in \mathbb{R} \exists y \in \mathbb{R} : y = x^2$.

For problems 31-36, let $U = \{-3, 0, \sqrt{2}, \sqrt{\pi}, 2^{\frac{1}{4}}\}, A = \{x \in U \mid x \text{ is an integer}\}, \text{ and } B = \{x \in U \mid x^2 \text{ is an integer}\}.$

- 32. List the elements of A.
- 33. List the elements of B.
- 34. List the elements of $A \cap B$.
- 35. List the elements of $A \cup B$.
- 36. List the elements of $A \cap B^c$.
- 37. Lists the elements of A B.

For problems 38-49 determine whether the statement is a tautology. Answer "yes" if the statement is a tautology and "no" if it is not a tautology.

38.
$$(q \land p) \lor (\neg p \land \neg q)$$

39. $\neg (p \land \neg p)$